Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
نویسندگان
چکیده
Quantitative research in neuroimaging often relies on anatomical segmentation of human brain MR images. Recent multi-atlas based approaches provide highly accurate structural segmentations of the brain by propagating manual delineations from multiple atlases in a database to a query subject and combining them. The atlas databases which can be used for these purposes are growing steadily. We present a framework to address the consequent problems of scale in multi-atlas segmentation. We show that selecting a custom subset of atlases for each query subject provides more accurate subcortical segmentations than those given by non-selective combination of random atlas subsets. Using a database of 275 atlases, we tested an image-based similarity criterion as well as a demographic criterion (age) in a leave-one-out cross-validation study. Using a custom ranking of the database for each subject, we combined a varying number n of atlases from the top of the ranked list. The resulting segmentations were compared with manual reference segmentations using Dice overlap. Image-based selection provided better segmentations than random subsets (mean Dice overlap 0.854 vs. 0.811 for the estimated optimal subset size, n=20). Age-based selection resulted in a similar marked improvement. We conclude that selecting atlases from large databases for atlas-based brain image segmentation improves the accuracy of the segmentations achieved. We show that image similarity is a suitable selection criterion and give results based on selecting atlases by age that demonstrate the value of meta-information for selection.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملEvaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains.
This paper evaluates strategies for atlas selection in atlas-based segmentation of three-dimensional biomedical images. Segmentation by intensity-based nonrigid registration to atlas images is applied to confocal microscopy images acquired from the brains of 20 bees. This paper evaluates and compares four different approaches for atlas image selection: registration to an individual atlas image ...
متن کاملAutomatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopt...
متن کاملGenerating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method
Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...
متن کاملOptimum template selection for atlas-based segmentation.
Atlas-based segmentation of MR brain images typically uses a single atlas (e.g., MNI Colin27) for region identification. Normal individual variations in human brain structures present a significant challenge for atlas selection. Previous researches mainly focused on how to create a specific template for different requirements (e.g., for a certain population). We address atlas selection with a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2009